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A Brownian particle’s random motions can be rectified by a periodic potential-energy landscape that alter-
nates between two states, even if both states are spatially symmetric. If the two states differ only by a discrete
translation, the direction of the ratchet-driven current can be reversed by changing their relative durations. We
experimentally demonstrate flux reversal in a symmetric two-state ratchet by tracking the motions of colloidal
spheres moving through large arrays of discrete potential-energy wells created with dynamic holographic
optical tweezers. The model’s simplicity and high degree of symmetry suggest possible applications in
molecular-scale motors.
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Until fairly recently, random thermal fluctuations were
considered impediments to inducing motion in systems such
as motors. Fluctuations can be harnessed, however, through
mechanisms such as stochastic resonance �1� and thermal
ratchets �2�, as efficient transducers of input energy into me-
chanical motion. Unlike conventional machines, which battle
noise, molecular-scale devices that exploit these processes
actually requite thermal fluctuations to operate.

This article focuses on thermal ratchets in which the ran-
dom motions of Brownian particles are rectified by a time-
varying potential-energy landscape. Even when the land-
scape has no overall slope and thus exerts no average force,
directed motion still can result from the accumulation of co-
ordinated impulses. Most thermal ratchet models break spa-
tiotemporal symmetry by periodically translating, tilting, or
otherwise modulating a spatially asymmetric landscape �2�.
Inducing a flux is almost inevitable in such systems unless
they satisfy conditions of spatiotemporal symmetry or super-
symmetry �3�. Even a spatially symmetric landscape can in-
duce a flux with appropriate driving �4–7�. Unlike determin-
istic motors, however, the direction of motion in these
systems can depend sensitively on implementation details.

We recently demonstrated a spatially symmetric three-
state thermal ratchet for micrometer-scale colloidal particles
implemented with arrays of holographic optical tweezers,
each of which constitutes a discrete potential-energy well
�7�. Repeatedly displacing the array, first by one-third of a
lattice constant and then by two-thirds, breaks spatiotempo-
ral symmetry in a manner that induces a flux. Somewhat
surprisingly, the direction of motion depends sensitively on
the duration of the states relative to the time required for a
particle to diffuse the intertrap separation �7�. The induced
flux therefore can be canceled or even reversed by varying
the rate of cycling, rather than the direction. This approach
builds upon the pioneering demonstration of unidirectional
flux induced by a spatially asymmetric time-averaged optical
ratchet �8,9�, and of reversible transitions driven by stochas-
tic resonance in a dual-trap rocking ratchet �10,11�.

Here, we demonstrate flux induction and flux reversal in a
symmetric two-state thermal ratchet implemented with dy-
namic holographic optical trap arrays �12,13�. The transport
mechanism for this two-state ratchet is more subtle than our
previous three-state model in that the direction of motion is

not easily intuited from the protocol. Its capacity for flux
reversal in the absence of external loading, by contrast, can
be inferred immediately by considerations of spatiotemporal
symmetry. This also differs from the three-state ratchet �7�
and the rocking double tweezer �10,11� in which flux rever-
sal results from a finely tuned balance of parameters.

Figure 1 schematically depicts how the two-state ratchet
operates. Each state consists of a pattern of discrete optical
traps, modeled here as Gaussian wells of width � and depth
V0, uniformly separated by a distance L��. The first array
of traps is extinguished after time T1 and replaced immedi-
ately with a second array, which is displaced from the first by
L /3. The second pattern is extinguished after time T2 and
replaced again by the first, thereby completing one cycle.

If the potential wells in the second state overlap those in
the first, then trapped particles are handed back and forth
between neighboring traps as the states cycle, and no motion
results. This also is qualitatively different from the three-
state ratchet, which deterministically transfers particles for-
ward under comparable conditions, in a process known as
optical peristalsis �7,14�. The only way the symmetric two-
state ratchet can induce motion is if trapped particles are
released when the states change and then diffuse freely.

The motion of a Brownian particle in this system can be
described with the one-dimensional Langevin equation

FIG. 1. One complete cycle of a spatially symmetric two-state
ratchet potential comprised of discrete potential wells.
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�ẋ�t� = − V�„x�t� − f�t�… + ��t� , �1�

where � is the particle’s viscous drag coefficient, V�x� is the
potential-energy landscape, V��x�=�V�x� /�x is its derivative,
and ��t� is a �-correlated stochastic force representing ther-
mal noise. The potential-energy landscape in our system is
spatially periodic with period L,

V�x + L� = V�x� . �2�

The time-varying displacement of the potential energy in our
two-state ratchet is described by a periodic function f�t� with
period T=T1+T2, which is plotted in Fig. 2�a�.

The equations describing this traveling potential ratchet
can be recast into the form of a tilting ratchet, which ordi-
narily would be implemented by applying an oscillatory ex-
ternal force to objects on an otherwise fixed landscape. The
appropriate coordinate transformation, y�t�=x�t�− f�t� �2�,
yields

�ẏ�t� = − V�„y�t�… + F�t� + ��t� , �3�

where F�t�=−� ḟ�t� is the effective driving force. Because
f�t� has a vanishing mean, the average velocity of the origi-
nal problem is the same as that of the transformed tilting
ratchet �ẋ�= �ẏ�, where the angle brackets imply both an en-
semble average and an average over a period T.

Reimann has demonstrated �2,3� that a steady-state flux,
�ẏ��0, develops in any tilting ratchet that breaks both spa-
tiotemporal symmetry,

V�y� = V�− y� and − F�t� = F�t + T/2� , �4�

and also spatiotemporal supersymmetry,

− V�y� = V�y + L/2� and − F�t + �t� = F�− t� , �5�

for any �t. No flux results if either of Eqs. �4� and �5� is
satisfied.

The optical trapping potential depicted in Fig. 1 is sym-
metric but not supersymmetric. Provided that F�t� violates
the symmetry condition in Eq. �4�, the ratchet must induce
directed motion. Although F�t� is supersymmetric, as can be
seen in Fig. 2�b�, it is symmetric only when T1=T2. Conse-
quently, we expect a particle current for T1�T2. The zero
crossing at T1=T2 furthermore portends flux reversal on ei-
ther side of the equality.

We calculate the steady-state velocity for this system by
solving the master equation associated with Eq. �1� �7,15�.
The probability for a driven Brownian particle to drift from
position x0 to within dx of position x during the interval t, is
given by the propagator

P�x,t�x0,0�dx = e�tL�x,t��dt���x − x0�dx , �6�

where the Liouville operator is

L�x,t� = D	 �2

�x2 + �
�

�x
V��x,t�
 , �7�

and where �−1 is the thermal energy scale �15�. The steady-
state particle distribution ��x� is an eigenstate of the master
equation

��x� =� P�x,T�x0,0���x0�dx0, �8�

and the associated steady-state flux is �7�

v =� x − x0

T
��x0�P�x,T�x0,0�dxdx0. �9�

The natural length scale in this problem is L, the intertrap
spacing in either state. The natural time scale, 	=L2 / �2D�, is
the time required for particles of diffusion constant D to
diffuse this distance.

Figure 3 shows how v varies with T2 /T1 for various val-
ues of T /	 for experimentally accessible values of V0, �, and
L. As anticipated, the net drift vanishes for T1=T2. Less ob-
viously, the induced flux is directed from each well in the
longer-duration state toward the nearest well in the short-
lived state. The flux falls off as 1 /T in the limit of large T
because the particles spend increasingly much of their time
localized in traps. It also diminishes for short T because the
particles cannot keep up with the landscape’s evolution. In
between, the range of fluxes can be tuned with T.

We implemented this model for a sample of
1.53-
m-diam colloidal silica spheres �Bangs Laboratories,
lot number 5328� dispersed in water, using potential-energy

FIG. 2. �a� Displacement function f�t�. �b� Equivalent tilting-

ratchet driving force, F�t�=−� ḟ�t�.

FIG. 3. Steady-state drift velocity as a function of the relative
dwell time, T2 /T1, for �V0=2.75, L=5.2 
m, �=0.65 
m, and
various values of T /	. Transport is optimized under these condi-
tions by running the ratchet at T /	=0.193.
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landscapes created from arrays of holographic optical traps
�7,12,13,16�. The sample was enclosed in a hermetically
sealed glass chamber roughly 40-
m thick created by bond-
ing the edges of a coverslip to a microscope slide, and was
allowed to equilibrate to room temperature �21±1 °C� on
the stage of a Zeiss S100 2TV Axiovert inverted optical mi-
croscope. A 100�NA 1.4 oil immersion SPlan Apo objec-
tive lens was used to focus the optical tweezer array into the
sample and to image the spheres, whose motions were cap-
tured with an NEC TI 324A low noise monochrome charge-
coupled device �CCD� camera. The micrograph in Fig. 4�a�
shows the focused light from a 5�20 array of optical traps
formed by a phase hologram projected with a Hamamatsu
X7550 spatial light modulator �17�. The tweezers are ar-
ranged in twenty-trap manifolds 37-
m long separated by
L=5.2 
m. Each trap is powered by an estimated
2.5±0.4 mW of laser light at 532 nm. The particles, which
appear in the bright-field micrograph in Fig. 4�b�, are twice
as dense as water and sediment to the lower glass surface,
where they diffuse freely in the plane with a measured dif-
fusion coefficient of D=0.33±0.03 
m2/sec. This estab-
lishes the characteristic time scale for the system of 	
=39.4 sec, which is quite reasonable for digital video mi-
croscopy studies. Out-of-plane fluctuations were minimized
by focusing the traps at the spheres’ equilibrium height
above the wall �18�.

We projected two-state cycles of optical trapping patterns
in which the manifolds in Fig. 4�a� were alternately dis-
placed in the spheres’ equilibrium plane by L /3, with the
duration of the first state fixed at T1=3 sec and T2 ranging
from 0.8 to 14.7 sec. To measure the flux induced by this
cycling potential-energy landscape for one value of T2, we
first gathered roughly two dozen particles in the middle row
of traps in state 1, as shown in Fig. 4�b�, and then projected
up to one hundred periods of two-state cycles. The particles’
motions were recorded as uncompressed digital video
streams for analysis �19�. Their time-resolved trajectories
then were averaged over the transverse direction into the
probability density, ��x , t��x, for finding particles within
�x=0.13 
m of position x after time t. We also tracked par-
ticles outside the trapping pattern to monitor their diffusion
coefficients and to ensure the absence of drifts in the sup-
porting fluid. Starting from this well-controlled initial condi-
tion resolves any uncertainties arising from the evolution of
nominally random initial conditions �7�.

Figures 4�c� and 4�d� show the spatially resolved time
evolution of ��x , t� for T2=0.8 sec�T1 and T2=8.6 sec
T1. In both cases, the particles spend most of their time
localized in traps, visible here as bright stripes, occasionally
using the shorter-lived traps as springboards to neighboring
wells in the longer-lived state. The mean particle position
�x�t��=�x��x , t�dx advances as the particles make these
jumps, with the associated results plotted in Fig. 4�e�.

The speed with which an initially localized state, ��x ,0�
���x�, advances differs from the steady-state speed plotted,
in Fig. 3, but still can be calculated as the first moment of the
propagator,

�x�t�� =� yP�y,t�0,0�dy . �10�

Numerical analysis reveals a nearly constant mean speed that
agrees quite closely with the steady-state speed from Eq. �9�.

Fitting traces such as those in Fig. 4�e� to linear trends

FIG. 4. �a� Image of 5�20 array of holographic optical traps at
L=5.2 
m. �b� Video micrograph of colloidal silica spheres
1.53 
m in diameter trapped in the middle row of the array at the
start of an experimental run. �c� and �d� Time evolution of the
measured probability density for finding particles at T2=0.8 sec and
T2=8.6 sec, respectively, with T1 fixed at 3 sec. �e� Time evolution
of the particles’ mean position calculated from the distribution func-
tions in �c� and �d�. The slopes of linear fits provide estimates for
the induced drift velocity, which can be compared with displace-
ments calculated with Eq. �10� for �V0=2.75 and �=0.65 
m. �f�
Measured drift speed as a function of relative dwell time T2 /T1,
compared with predictions of Eq. �9�.
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provides estimates for the ratchet-induced flux, which is plot-
ted in Fig. 4�f�. The solid curve in Fig. 4�f� shows excellent
agreement with predictions of Eq. �10� for �V0=2.75±0.5
and �=0.65±0.05 
m.

Our implementation of the two-state ratchet involves up-
dating the optical intensity pattern to translate the physical
landscape. However, the same principles can be applied to
systems in which the landscape remains fixed and the object
undergoes cyclic transitions between two states. Figure 5 de-
picts a model for an active two-state walker on a fixed physi-
cal landscape that is inspired by the biologically relevant
transport of single myosin head groups along actin filaments
�20�. The walker consists of a head group that interacts with
localized potential-energy wells periodically distributed on
the landscape. It also is attached to a lever arm that uses an
external energy source to translate the head group by a dis-

tance somewhat smaller than the interwell separation. The
other end of the lever arm is connected to the payload, whose
viscous drag would provide the leverage necessary to trans-
late the head group between the extended and retracted
states. Switching between the walker’s two states is equiva-
lent to the two-state translation of the potential-energy land-
scape in our experiments, and thus would have the effect of
translating the walker in the direction of the shorter-lived
state. A similar model in which a two-state walker traverses a
spatially asymmetric potential-energy landscape yields deter-
ministic motion at higher efficiency than the present model
�21�. It does not, however, allow for reversibility. The length
of the lever arm and the diffusivity of the motor’s body and
payload determine the ratio T /	 and thus the motor’s effi-
ciency. The two-state ratchet’s direction does not depend on
T /	, however, even under heavy loading. This differs from
the three-state ratchet �7�, in which T /	 also controls the
direction of motion. This protocol could be used in the de-
sign of mesoscopic motors based on synthetic macromol-
ecules or microelectromechanical systems.

We are grateful for Mark Ofitserov’s many technical con-
tributions. This work was supported by the National Science
Foundation through Grants No. DBI-0233971 and DMR-
0304906. S.L. acknowledges support from the Kessler Fam-
ily Foundation.

�1� P. Hanggi, ChemPhysChem 3, 644 �2002�.
�2� P. Reimann, Phys. Rep. 361, 57 �2002�.
�3� P. Reimann, Phys. Rev. Lett. 86, 4992 �2001�.
�4� Y.-D. Chen, Phys. Rev. Lett. 79, 3117 �1997�.
�5� R. Kanada and K. Sasaki, J. Phys. Soc. Jpn. 68, 3759 �1999�.
�6� P. H. Jones, M. Goonasekera, and F. Renzoni, Phys. Rev. Lett.

93, 073904 �2004�.
�7� S.-H. Lee, K. Ladavac, M. Polin, and D. G. Grier, Phys. Rev.

Lett. 94, 110601 �2005�.
�8� L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libch-

aber, Phys. Rev. Lett. 74, 1504 �1995�.
�9� T. Harada and K. Yoshikawa, Phys. Rev. E 69, 031113 �2004�.

�10� L. I. McCann, M. Dykman, and B. Golding, Nature �London�
402, 785 �1999�.

�11� M. I. Dykman and B. Golding, in Stochastic Processes in
Physics, Chemistry and Biology edited by J. A. Freund and T.
Pöschel �Springer-Verlag, Berlin, 2000�, pp. 365–377.

�12� E. R. Dufresne and D. G. Grier, Rev. Sci. Instrum. 69, 1974

�1998�.
�13� J. E. Curtis, B. A. Koss, and D. G. Grier, Opt. Commun. 207,

169 �2002�.
�14� B. A. Koss and D. G. Grier, Appl. Phys. Lett. 82, 3985 �2003�.
�15� H. Risken, The Fokker-Planck Equation, 2nd ed. �Springer-

Verlag, Berlin, 1989�.
�16� E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets,

and D. G. Grier, Rev. Sci. Instrum. 72, 1810 �2001�.
�17� Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Muko-

hzaka, Y. Kobayashi, and T. Hara, Opt. Rev. 6, 339 �1999�.
�18� S. H. Behrens, J. Plewa, and D. G. Grier, Eur. Phys. J. E 10,

115 �2003�.
�19� J. C. Crocker and D. G. Grier, J. Colloid Interface Sci. 179,

298 �1996�.
�20� K. Kitamura, M. Tokunaga, A. H. Iwane, and T. Yanagida,

Nature �London� 397, 129 �1999�.
�21� F. Jülicher, A. Ajdari, and J. Prost, Rev. Mod. Phys. 69, 1269

�1997�.

FIG. 5. Toy model of diffusive molecular motor.
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